2 research outputs found

    A pilot feasibility randomised controlled trial of bone antiresorptive agents on bone turnover markers in critically ill women

    No full text
    AbstractCritical illness is associated with increased bone turnover, loss of bone density, and increased risk of fragility fractures. The impact of bone antiresorptive agents in this population is not established. This trial examined the efficacy, feasibility, and safety of antiresorptive agents administered to critically ill women aged fifty years or greater. Women aged 50 years or greater admitted to an intensive care unit for at least 24 h were randomised to receive an antiresorptive agent (zoledronic acid or denosumab) or placebo, during critical illness and six months later (denosumab only). Bone turnover markers and bone mineral density (BMD) were monitored for 1 year. We studied 18 patients over 35 months before stopping the study due to the COVID-19 pandemic. Antiresorptive medications decreased the bone turnover marker type 1 cross-linked c-telopeptide (CTX) from day 0 to 28 by 43% (± 40%), compared to an increase of 26% (± 55%) observed with placebo (absolute difference − 69%, 95% CI − 127% to − 11%), p = 0.03). Mixed linear modelling revealed differences in the month after trial drug administration between the groups in serum CTX, alkaline phosphatase, parathyroid hormone, and phosphate. Change in BMD between antiresorptive and placebo groups was not statistically analysed due to small numbers. No serious adverse events were recorded. In critically ill women aged 50-years and over, antiresorptive agents suppressed bone resorption markers without serious adverse events. However, recruitment was slow. Further phase 2 trials examining the efficacy of these agents are warranted and should address barriers to enrolment.Trial registration: ACTRN12617000545369, registered 18th April 2017

    A Bayesian reanalysis of the Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial

    No full text
    Background Timing of initiation of kidney-replacement therapy (KRT) in critically ill patients remains controversial. The Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial compared two strategies of KRT initiation (accelerated versus standard) in critically ill patients with acute kidney injury and found neutral results for 90-day all-cause mortality. Probabilistic exploration of the trial endpoints may enable greater understanding of the trial findings. We aimed to perform a reanalysis using a Bayesian framework. Methods We performed a secondary analysis of all 2927 patients randomized in multi-national STARRT-AKI trial, performed at 168 centers in 15 countries. The primary endpoint, 90-day all-cause mortality, was evaluated using hierarchical Bayesian logistic regression. A spectrum of priors includes optimistic, neutral, and pessimistic priors, along with priors informed from earlier clinical trials. Secondary endpoints (KRT-free days and hospital-free days) were assessed using zero–one inflated beta regression. Results The posterior probability of benefit comparing an accelerated versus a standard KRT initiation strategy for the primary endpoint suggested no important difference, regardless of the prior used (absolute difference of 0.13% [95% credible interval [CrI] − 3.30%; 3.40%], − 0.39% [95% CrI − 3.46%; 3.00%], and 0.64% [95% CrI − 2.53%; 3.88%] for neutral, optimistic, and pessimistic priors, respectively). There was a very low probability that the effect size was equal or larger than a consensus-defined minimal clinically important difference. Patients allocated to the accelerated strategy had a lower number of KRT-free days (median absolute difference of − 3.55 days [95% CrI − 6.38; − 0.48]), with a probability that the accelerated strategy was associated with more KRT-free days of 0.008. Hospital-free days were similar between strategies, with the accelerated strategy having a median absolute difference of 0.48 more hospital-free days (95% CrI − 1.87; 2.72) compared with the standard strategy and the probability that the accelerated strategy had more hospital-free days was 0.66. Conclusions In a Bayesian reanalysis of the STARRT-AKI trial, we found very low probability that an accelerated strategy has clinically important benefits compared with the standard strategy. Patients receiving the accelerated strategy probably have fewer days alive and KRT-free. These findings do not support the adoption of an accelerated strategy of KRT initiation
    corecore